基于數(shù)據(jù)驅(qū)動的發(fā)電設備在線預警研究
黃一楓,茅大鈞
(上海電力學院 自動化工程學院,上海 200090)
摘 要:針對發(fā)電設備故障頻發(fā)的情況,基于現(xiàn)場實時數(shù)據(jù)建立設備正常的運行狀態(tài)模型并結合PI實時數(shù)據(jù)庫構建了發(fā)電機組及關鍵設備的在線預警系統(tǒng),對所采集的數(shù)據(jù)進行處理、分析、預測,來判斷設備的運行狀態(tài)并幫助運行人員確認設備是否需要檢修。通過電廠實際運用表明,該系統(tǒng)大幅提高了設備運行的安全水平和效率,降低了運行維護成本。
關鍵詞:數(shù)據(jù)驅(qū)動;在線預警;發(fā)電設備
中圖分類號:TM621.3;TP277 文獻標識碼:A 文章編號:1007-3175(2017)07-0015-05
Research on Online Early Warning of Power Generating Equipment Based on Data Driven
HUANG Yi-feng, MAO Da-jun
(College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: In allusion to the circumstance of power generating equipment faults taking place frequently, the normal operational state model was established based on the site real-time data, and combined with the PI real-time database, the online early warning system of generator set and key equipment was constructed to carry out disposal, analysis and prediction to judge the equipment operating state and to help the operator determine whether to overhaul the equipment. The practical application of power plant shows that this system drastically improves the safety level and efficiency of equipment operation and reduces the operating maintenance cost.
Key words: data driven; online early warning; power generating equipment
參考文獻
[1] 陳世和. 智能電廠的核心技術與理念[C]// 國家智能制造論壇,2016.
[2] 張晉賓,周四維,陸星羽. 智能電廠概念、架構、功能及實施[J]. 中國儀器儀表,2017(4):33-39.
[3] 鐘陽. 基于數(shù)據(jù)統(tǒng)計分析的變槳系統(tǒng)故障預警方法[D]. 北京:華北電力大學,2015.
[4] 趙洪山,連莎莎,邵玲. 基于模型的風電機組變槳距系統(tǒng)故障檢測[J]. 電網(wǎng)技術,2015,39(2):440-444.
[5] YANG T S, CHEN B, ZHANG H L, et al.State Trend Prediction of Spacecraft Based on BP Neural Network[C]//International Conference on Measurement,2013,2:809-812.
[6] HUANG Y H, ZHOU X X.Knowledge model for electric power big data based on ontology and semantic web[J].CSEE Journal of Power and Energy Systems,2015,1(1):19-27.
[7] ANGELI C, CHATZINIKOLAOU A.On-line fault detection techniques for technical systems:a survey[J].International Journal of Computer Science & Applications,2004,1(1):12-30.
[8] 徐波,韓學山,李業(yè)勇,等. 電力設備機會維修決策模型[J]. 中國電機工程學報,2016,36(23):6379-6388.
[9] 李玉杰. 城郊煤礦機電設備維修管理現(xiàn)狀分析與提升對策[D]. 南昌:南昌大學,2016.
[10] 富雙進. 電站風機故障預警系統(tǒng)的研究[D]. 保定:華北電力大學,2015.
[11] 王韜. 基于P I 數(shù)據(jù)庫的風電場實時監(jiān)控系統(tǒng)應用研究[J]. 電氣自動化,2016(6):35-37.
[12] 蔡曉潔,楊小柏.PI 實時數(shù)據(jù)庫在信息化系統(tǒng)中的應用[J]. 自動化技術與應用,2016,35(7):161-165.
[13] 郭艷平,顏文俊,包哲靜. 風力發(fā)電機組在線故障預警與診斷一體化系統(tǒng)設計與應用[J]. 電力系統(tǒng)自動化,2010,34(16):83-86.